
Ministry of higher Educations And Scientific
research

Middle Technical University
Kut Technical institute
Electrical department

DESIGN AND IMPLEMENTATION

OF

Smart Hart Rate Measurement

A project submitted in Partial

Fulfillment of the Requirement for

Degree of Diploma In Electrical

By

Sajad Fadel

Hussain Taghi

Supervised by

Bahaa Kareem

2019 – 2020

 I

DEPARTURMENT OF ELECTRICAL TECHNIQUES

KUT TECHNICAL INSTITUTE

Certificate

 This is certify that the project worked entitled “ DESIGN AND

IMPLEMENTATION OF Smart Hart Rate Measurement " by Sajad Fadel

Hussain Taghi are student of department of electrical techniques , kut

technical intitute in partial fulfillment of the requirements for the award of

the degree of Bachelor of Techniques In Electrical

 The Guide Head of the Department

 II

DECLEARATION

I declare that the work reported in the project entitled " DESIGN AND

IMPLEMENTATION OF Smart Hart Rate Measurement " is record of the

work done by our in the department of electrical techniques , kut technical

intitute .

Mohammad Satar – Ahmed Kareem – Sa

rmad Baseel

 III

ACKNOWLEDGMENT

 First and foremost, we would like to extend my sincere thanks to our

guide Abdul. Hadi , Department of Electrical Techniques , for his guidance

, encouragement , motivation and continued support throughout our project

work. He has allowed to pursue our project interests with sufficient

freedom, while always being there to guide ours. Working with him has

been one of the most rewarding experiences of our professional life.

Also, we would like to extend my thanks to ……. Ass. Professor and

Head, department of electrical techniques , kut technical intitute for their

supporting and continuing help. We would like to thank all our teachers

and all the staff of department of electrical techniques , kut technical

intitute for their supporting and continuing help .

We would like to thank our fellow project mates for helping me and

sharing their knowledge throughout the project duration , and

Finally , we wish to thank all those people who help our and all our

families members for their supported in successful completion of studying

in Department of Electrical Techniques .

Mohammad Satar – Ahmed Kareem – Sarmad Baseel

 IV

DEDICATION

To the lighthouse science, Great Prophet and Human Teacher

Muhammad peace be upon him and his family .

To our homeland (IRAQ)..

To our parents…

 To our brothers, to our families .…, and

To all who help our .…..

 Chapter one

1

1.1 : Introduction

 The heart is one of the most vital organs within the human body. It

acts as a pump that circulates oxygen and nutrient carrying blood around

the body in order to keep it functioning. The circulated blood also removes

waste products generated from the body to the kidneys. When the body is

exerted the rate at which the heart beats will vary proportional to the

amount of effort being exerted. By detecting the voltage created by the

beating of the heart, its rate can be easily observed and used for a number

of health purposes

 Heartbeat and body temperature are the major signs that are routinely

measured by physicians after the arrival of a patient. Heart rate refers to

how many times a heart contracts and relaxes in a unit of time (usually per

minute). Heart rate varies for different age groups. For a human adult of

age 18 or more years, a normal resting heart rate is around 72 beats per

minute (bpm). The functioning of heart can be called as efficient if it is

having lower heart rate when the patient is at rest. Babies have a much

higher rate than adults around 120 bpm and older children have heart rate

around 90 bpm.

 So this research describes the design of a very low-cost patient

monitoring system which measures heart rate of a patient by using arduino

and pulse sensor , The arduino uno processes this data and displays it in

LCD, and physician or doctor will be able to examine him/her. This device

will be much needed during emergency period or for saving time of both

patient and doctor.

1.2 : Tools used in the project

1- Arduino Board .

2- Pulse Sensor .

3- LCD I2C.

4- Wire .

5- Breadboard

 Chapter one

2

1.2.1 : Arduino Board

 Is an open-source platform used for building electronics projects.

Arduino consists of both a physical programmable circuit board often

referred to as a microcontroller and a piece of software, or IDE (Integrated

Development Environment) that runs on your computer, used to write and

upload computer code to the physical board.

 The Arduino platform has become quite popular with people just

starting out with electronics, and for good reason. Unlike most previous

programmable circuit boards, the Arduino does not need a separate piece

of hardware (called a programmer) in order to load new code onto the

board – you can simply use a USB cable. Additionally, the Arduino IDE

uses a simplified version of C++, making it easier to learn to program.

Finally, Arduino provides a standard form factor that breaks out the

functions of the micro-controller into a more accessible package.

 The Arduino hardware and software was designed for artists,

designers, hobbyists, hackers, student, and anyone interested in creating

interactive objects or environments. Arduino can interact with buttons,

LEDs, motors, speakers, GPS units, cameras, the internet, and even your

smart-phone or your TV! This flexibility combined with the fact that the

Arduino software is free, the hardware boards are pretty cheap, and both

the software and hardware are easy to learn has led to a large community

of users who have contributed code and released instructions for a huge

variety of Arduino-based projects

1.2.1.1 : Type of Arduino

 There are a several type of Arduino board Fig. 1.1 , the mean different

between it are the speed of processor and the number of pins , The most

common typical are :

• Arduino Nano

 Chapter one

3

• Arduino Mini

• Arduino micro

• Arduino Leonardo

• Arduino Uno

• Arduino Mega

 Figure 1.1 : Arduino Boards

We will talk about Arduino UNO only . because we used it in this Project

1.2.1.2 : Arduino Uno

 Arduino/Genuino Uno is a microcontroller board based on the

ATmega328P . It has 14 digital input/output pins (of which 6 can be used

as PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB

connection, a power jack, an ICSP header and a reset button. It contains

everything needed to support the microcontroller; simply connect it to a

computer with a USB cable or power it with a AC-to-DC adapter or

battery to get started.. You can tinker with your UNO without worring too

 Chapter one

4

much about doing something wrong, worst case scenario you can replace

the chip for a few dollars and start over again. Figure 1.2 & 1.3 .

 Fig. 1.2 : Arduino UNO Pins Fig. 1.3 : Arduino UNO Board

 "Uno" means one in Italian and was chosen to mark the release of

Arduino Software (IDE) 1.0. The Uno board and version 1.0 of Arduino

Software (IDE) were the reference versions of Arduino, now evolved to

newer releases. The Uno board is the first in a series of USB Arduino

boards, and the reference model for the Arduino platform; for an extensive

list of current, past or outdated boards and datasheet see the last chapter .

We can transfer the code from the computer to the Arduino through a USB

cable as shown in the figure 1.4

 Chapter one

5

Fig.1.4 : USB cable of Arduino UNO

1.2.2 : Pulse Sensor

 Pulse Sensor is a well-designed plug-and-play heart-rate sensor for

Arduino. It can be used by students, artists, athletes, makers, and game &

mobile developers who want to easily incorporate live heartrate data into

their projects. The sensor clips onto a fingertip or earlobe and plugs right

into Arduino with some jumper cables. It also includes an open-source

monitoring app that graphs your pulse in real time.

 Chapter one

6

Fig. 1.5 : pulse sensor

The front of the sensor is the pretty side with the Heart logo. This is

the side that makes contact with the skin. On the front you see a small

round hole, which is where the LED shines through from the back, and

there is also a little square just under the LED. The square is an ambient

light sensor, exactly like the one used in cellphones, tablets, and laptops, to

adjust the screen brightness in different light conditions. The LED shines

light into the fingertip or earlobe, or other capillary tissue, and sensor reads

the light that bounces back.

The back of the sensor is where the rest of the parts are mounted. We

put them there so they would not get in the way of the of the sensor on the

front. Even the LED we are using is a reverse mount LED.

The Pulse Sensor has 3 holes around the outside edge which make it

easy to sew it into almost anything.

 Chapter one

7

Fig. 1.6 : Front & behind shape of pules sensor

Fig. 1.7 : the full looking of sensor

 Chapter one

8

A 24-inch Color-Coded Cable, with (male) header connectors. You'll

find this makes it easy to embed the sensor into your project, and connect

to an Arduino. No soldering is required.

• RED wire = +3V to +5V

• BLACK wire = GND

• PURPLE wire = Signal

Fig. 1.8 : header connectors of pulse sensor

The Pulse Sensor can be connected to arduino, or plugged into a

breadboard. Before we get it up and running, we need to protect the

exposed circuitry so you can get a reliable heart beat signal.

1.2.3 : LCD I2C

 A liquid crystal display is a special thin flat panel that can let light go

through it, or can block the light . The panel is made up of several blocks,

and each block can be in any shape. Each block is filled with liquid

crystals that can be made clear or solid, by changing the electric current to

that block. Liquid crystal displays are often abbreviated LCDs .

 2 lines x 16 characters LCD display with WHITE characters on

BLUE background and backlight.

 Chapter one

9

Features :

• Wide viewing angle and high contrast

• Don't need separate power supply for backlight

• Supported 4 or 8 bit parallel interface

• Display 2-line X 16-character

• Operate with 5V DC

• Free 16 positions male header without I2C .

• Free 4 male header with I2C

Specifications :

• Module Size (W x H x T): 80mm X 36mm X 11mm

• Black Metal Bezel (W x H): 70.7mm X 23.8mm

• Viewing Area (W x H): 55.7mm X 11mm

Fig. 1.9 : LCD 16*2

 Chapter one

10

1.2.3.1 : LCD 16*2 Connected

LCD pins is modified to be 4 pins only after connected I2C module

to LCD , the fig. below is shown the only way to the connection between

I2C module and Arduino uno

Fig. 1.10 : LCD I2C Connection with Arduino

 First of all we connect i2c pins module as shown in the schematic.

Power the LCD module to 5 volts and connect the ground as well. The

SDA pin of the i2c module connected to arduino A5 and the SCL pin to

A4. We connect the arduino to USB and we are ready to program.

1.2.3.2 : Source Coding

 First thing we need to do is it insert the Liquid Crystal Library. We

can do that like this: Sketch > Include Library < Wire.h > & <

LiquidCrystal_I2C.h . Then we have to create an LCD object. In the setup

we have to initialize the interface to the LCD and specify the dimensions

of the display using the begin() function.

 Chapter one

11

 In the loop we write our main program. Using the print() function we

print on the LCD. The setCursor() function is used for setting the location

at which subsequent text written to the LCD will be displayed. The blink()

function is used for displaying a blinking cursor and the noBlink() function

for turning off. The cursor() function is used for displaying underscore

cursor and the noCursor() function for turning off. Using the clear()

function we can clear the LCD screen .

1.2.4 : Jumper Wire

 Jumper wires are used for making connections between items on

your board and your Arduino’s header pins.

Fig. 1.11 : Jumper Wire

 Chapter one

12

1.2.5 : Breadboard

 A breadboard is a solderless device for temporary prototype with

electronics and test circuit designs. Most electronic components in

electronic circuits can be interconnected by inserting their leads or

terminals into the holes and then making connections through wires where

appropriate. The breadboard has strips of metal underneath the board and

connect the holes on the top of the board. The metal strips are laid out as

shown below. Note that the top and bottom rows of holes are connected

horizontally and split in the middle while the remaining holes are

connected vertically.

Fig. 1.12 : Breadboard

 Chapter Two

13

2.1 : The Circuits

2.1.1 : LCD Connection

 We will Connect the LCD as shown in the fig. 2.1

Fig. 2.1 : Connection of LCD with Arduino

2.1.2 : Pules Sensor Connection

We will Connect the pulse sensor as shown in the fig. 2.2

Fig. 2.2 : Connection of pulse sensor with Arduino

 Chapter Two

14

2.2 : Arduino Programming

 After completing the connections of a circuit, we will program the

Arduino with the Code

• First , must download the ARDUINO IDE program from the official

website

(https://www.arduino.cc/en/main/software) .

• After download , we must to install it like any program .

• After the installing is done , the main screen of the program is shown

in the figure 2.3

Fig. 2.3 : Arduino IDE

https://www.arduino.cc/en/main/software

 Chapter Two

15

• Write the following code on the Arduino IDE program .

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x3F,16,2); // set the LCD address to 0x27 for a 16 chars and

2 line display

int pulsePin = A0; // Pulse Sensor purple wire connected to analog pin A0

int blinkPin = 13; // pin to blink led at each beat

// Volatile Variables, used in the interrupt service routine!

volatile int BPM; // int that holds raw Analog in 0. updated every 2mS

volatile int Signal; // holds the incoming raw data

volatile int IBI = 600; // int that holds the time interval between beats! Must

be seeded!

volatile boolean Pulse = false; // "True" when User's live heartbeat is detected.

"False" when not a "live beat".

volatile boolean QS = false; // becomes true when Arduoino finds a beat.

static boolean serialVisual = true; // Set to 'false' by Default. Re-set to 'true' to see

Arduino Serial Monitor ASCII Visual Pulse

volatile int rate[10]; // array to hold last ten IBI values

volatile unsigned long sampleCounter = 0; // used to determine pulse timing

volatile unsigned long lastBeatTime = 0; // used to find IBI

volatile int P = 512; // used to find peak in pulse wave, seeded

volatile int T = 512; // used to find trough in pulse wave, seeded

volatile int thresh = 525; // used to find instant moment of heart beat, seeded

volatile int amp = 100; // used to hold amplitude of pulse waveform,

seeded

volatile boolean firstBeat = true; // used to seed rate array so we startup with

reasonable BPM

volatile boolean secondBeat = false; // used to seed rate array so we startup with

reasonable BPM

 Chapter Two

16

void setup()

{

 pinMode(blinkPin,OUTPUT); // pin that will blink to your heartbeat!

 Serial.begin(115200); // we agree to talk fast!

 interruptSetup(); // sets up to read Pulse Sensor signal every 2mS

 // IF YOU ARE POWERING The Pulse Sensor AT

VOLTAGE LESS THAN THE BOARD VOLTAGE,

 // UN-COMMENT THE NEXT LINE AND APPLY THAT

VOLTAGE TO THE A-REF PIN

 // analogReference(EXTERNAL);

 lcd.init();

 lcd.init();

lcd.backlight();

}

// Where the Magic Happens

void loop()

{

 serialOutput();

 if (QS == true) // A Heartbeat Was Found

 {

 // BPM and IBI have been Determined

 // Quantified Self "QS" true when arduino finds a heartbeat

 serialOutputWhenBeatHappens(); // A Beat Happened, Output that to serial.

 QS = false; // reset the Quantified Self flag for next time

 }

 delay(20); // take a break

}

void interruptSetup()

{

 // Initializes Timer2 to throw an interrupt every 2mS.

 Chapter Two

17

 TCCR2A = 0x02; // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO

INTO CTC MODE

 TCCR2B = 0x06; // DON'T FORCE COMPARE, 256 PRESCALER

 OCR2A = 0X7C; // SET THE TOP OF THE COUNT TO 124 FOR 500Hz

SAMPLE RATE

 TIMSK2 = 0x02; // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2

AND OCR2A

 sei(); // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED

}

void serialOutput()

{ // Decide How To Output Serial.

 if (serialVisual == true)

 {

 arduinoSerialMonitorVisual('-', Signal); // goes to function that makes Serial

Monitor Visualizer

 }

 else

 {

 sendDataToSerial('S', Signal); // goes to sendDataToSerial function

 }

}

void serialOutputWhenBeatHappens()

{

 if (serialVisual == true) // Code to Make the Serial Monitor Visualizer Work

 {

 Serial.print(" Heart-Beat Found "); //ASCII Art Madness

 Serial.print("BPM: ");

 Serial.println(BPM);

 lcd.print("Heart-Beat Found ");

 lcd.setCursor(1,1);

 lcd.print("BPM: ");

 lcd.setCursor(5,1);

 lcd.print(BPM);

 delay(300);

 lcd.clear();

 Chapter Two

18

 }

 else

 {

 sendDataToSerial('B',BPM); // send heart rate with a 'B' prefix

 sendDataToSerial('Q',IBI); // send time between beats with a 'Q' prefix

 }

}

void arduinoSerialMonitorVisual(char symbol, int data)

{

 const int sensorMin = 0; // sensor minimum, discovered through experiment

 const int sensorMax = 1024; // sensor maximum, discovered through experiment

 int sensorReading = data; // map the sensor range to a range of 12 options:

 int range = map(sensorReading, sensorMin, sensorMax, 0, 11);

 // do something different depending on the

 // range value:

}

void sendDataToSerial(char symbol, int data)

{

 Serial.print(symbol);

 Serial.println(data);

}

ISR(TIMER2_COMPA_vect) //triggered when Timer2 counts to 124

{

 cli(); // disable interrupts while we do this

 Signal = analogRead(pulsePin); // read the Pulse Sensor

 sampleCounter += 2; // keep track of the time in mS with this

variable

 int N = sampleCounter - lastBeatTime; // monitor the time since the last beat to

avoid noise

 // find the peak and trough of the pulse wave

 if(Signal < thresh && N > (IBI/5)*3) // avoid dichrotic noise by waiting 3/5 of last

IBI

 {

 Chapter Two

19

 if (Signal < T) // T is the trough

 {

 T = Signal; // keep track of lowest point in pulse wave

 }

 }

 if(Signal > thresh && Signal > P)

 { // thresh condition helps avoid noise

 P = Signal; // P is the peak

 } // keep track of highest point in pulse wave

 // NOW IT'S TIME TO LOOK FOR THE HEART BEAT

 // signal surges up in value every time there is a pulse

 if (N > 250)

 { // avoid high frequency noise

 if ((Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3))

 {

 Pulse = true; // set the Pulse flag when we think there is a

pulse

 digitalWrite(blinkPin,HIGH); // turn on pin 13 LED

 IBI = sampleCounter - lastBeatTime; // measure time between beats in mS

 lastBeatTime = sampleCounter; // keep track of time for next pulse

 if(secondBeat)

 { // if this is the second beat, if secondBeat == TRUE

 secondBeat = false; // clear secondBeat flag

 for(int i=0; i<=9; i++) // seed the running total to get a realisitic BPM at startup

 {

 rate[i] = IBI;

 }

 }

 if(firstBeat) // if it's the first time we found a beat, if firstBeat == TRUE

 {

 firstBeat = false; // clear firstBeat flag

 secondBeat = true; // set the second beat flag

 sei(); // enable interrupts again

 Chapter Two

20

 return; // IBI value is unreliable so discard it

 }

 // keep a running total of the last 10 IBI values

 word runningTotal = 0; // clear the runningTotal variable

 for(int i=0; i<=8; i++)

 { // shift data in the rate array

 rate[i] = rate[i+1]; // and drop the oldest IBI value

 runningTotal += rate[i]; // add up the 9 oldest IBI values

 }

 rate[9] = IBI; // add the latest IBI to the rate array

 runningTotal += rate[9]; // add the latest IBI to runningTotal

 runningTotal /= 10; // average the last 10 IBI values

 BPM = 60000/runningTotal; // how many beats can fit into a minute?

that's BPM!

 QS = true; // set Quantified Self flag

 // QS FLAG IS NOT CLEARED INSIDE THIS ISR

 }

 }

 if (Signal < thresh && Pulse == true)

 { // when the values are going down, the beat is over

 digitalWrite(blinkPin,LOW); // turn off pin 13 LED

 Pulse = false; // reset the Pulse flag so we can do it again

 amp = P - T; // get amplitude of the pulse wave

 thresh = amp/2 + T; // set thresh at 50% of the amplitude

 P = thresh; // reset these for next time

 T = thresh;

 }

 if (N > 2500)

 { // if 2.5 seconds go by without a beat

 thresh = 512; // set thresh default

 P = 512; // set P default

 T = 512; // set T default

 lastBeatTime = sampleCounter; // bring the lastBeatTime up to date

 Chapter Two

21

 firstBeat = true; // set these to avoid noise

 secondBeat = false; // when we get the heartbeat back

 }

 sei(); // enable interrupts when you're done!

}// end sir

• Connect the USB cable with the Arduino UNO board and Upload the

code for it , we can upload the code from () or by using the

keyboard (Ctrl + U) .

